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ABSTRACT

Binary dissection is widely used to partition non-uniform domains over parallel comput-

ers. This algorithm does not consider the perimeter, surface area, or aspect ratio of the

regions being generated and can yield decompositions that have poor communication to

computation ratio.

Parametric Binary Dissection (PBD) is a new algorithm in which each cut is chosen

to minimize load + Ax(shape). In a 2 (or :3) dimensional problem, load is the amount

of computation to be performed in a subregion and shape could refer to the perimeter

(respectively surface) of that subregion. Shape is a measure of comnmnication overhead and

the parameter A permits us to trade off load imbalance against comnmnication overhead.

When A is zero, the algorithm reduces to plain binary dissection.

This algorithm can be used to partition graphs embedded in 2 or 3-d. Here load is the

number of nodes in a subregion, shape the number of edges that leave that subregion, and A

the ratio of time to communicate over an edge to the time to compute at a node. We present

an algorithm that finds the depth d parametric dissection of an embedded graph with n

vertices and e edges in O(max[n log n, de]) time, which is an improvement over the O(dn log n)

time of plain binary dissection. We also present parallel versions of this algorithm; the best of

these requires O((n/p) log 3 p) time on a p processor hypercube, assuming graphs of bounded

degree.

We describe how PBD is applied to 3-d unstructured meshes and yields partitions that

are better than those obtained by plain dissection. We also discuss its application to the color

image quantization problem, in which samples in a high-resolution color space are mapped

onto a lower resolution space in a way that minimizes the color error.
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Hampton, VA 23681.
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1 Introduction
r

The partitioning of problems over the processors of a parallel computer sys-

tem remains the subject of considerable research. This problem is particu-

larly difficult when the domain or region being partitioned has nonuniform

computational requirements. For example, in a climate model, some areas

of the earth's surface may require greater computational effort than others.

We would like to apportion parts of the problem domain over the processors

of the system in such a way as to put equal computational load on all pro-

cessors, so as to minimize the total computational time. Another example is

the solution of aerodynamic problems using 'unstructured' meshes which are

graphs embedded in 2 or 3-dimensional space 1. Such meshes are increasingly

being used to investigate the aerodynamic properties of aircraft.

Problems of this type require huge amounts of computational power and

are at the limits of the memory capacities of the largest parallel processors.

There is a pressing need for techniques to improve the running time of such

problems, because they require scarce and expensive resources for their so-

lution and also because the solution itself has great economic value. The

solution to a weather calculation obviously decreases in value the longer it

takes to compute. For the case of physical calculations based on unstructured

meshes, a fast solution technique permits the designer to evaluate a larger

number of alternatives within the course of a single session.

The binary dissection or orthogonal recursive partition algorithm was

developed by Berger & Bokhari in 1985 [3, 4] as a means for partitioning

non-uniform domains. It was inspired by Bentley's work on k-dimensional

search trees [2]. This approach permits a very fast solution to the parti-

tioning problem and has found many applications [1, 9, 17]. The key idea

behind this algorithm is to make a series of bisections, along orthogonal di-

rections, minimizing the load imbalance at each step. This algorithm does

not take into consideration the perimeter, surface area, or aspect ratio of

the subregions being generated and can yield decompositions that have poor

communication to computation ratio.

In the present paper we present a new parametric binary dissection (PBD)

algorithm in which each recursive cut is chosen to minimize load + _ × (shape).

1As opposed to structured meshes which are basically cartesian grids, possibly with

nonuniform spacing.
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When the domain is made up of a 2-dimensional region, shape could refer

to the perimeter of a subregion. In the 3-d case it could refer to the surface

area. When this approach is applied to the problem of partitioning embed-

ded graphs, load refers to the number of vertices in a region and shape the

number of edges leaving a region. In general, shape is a measure of the

communication overhead and the parameter )_ permits us to trade off load

imbalance against communication overhead. We can sacrifice some amount

of load balance for better shapebalance in order to obtain faster overall com-

putation time. When _ is zero, the new algorithm reduces to simple binary

dissection.

This algorithm finds applications to partitioning problems in fields other

than parallel processing. One example is color image quantization, in which

samples in a high-resolution color space are mapped onto a lower resolution

space in a way that minimizes the color error. In our formulation of this

problem, one is given a 3-dimensional Boolean grid in which some points are

occupied and others are vacant. The objective is to partition this grid into

regions such that (1) the total number of regions is bounded by some given

maximum, and (2) the maximum distance between any two points within a

region is minimized.

Mesh partitioning is one of the problems to which we apply our algo-

rithm. A number of other partitioning algorithms have been proposed for

this problem, and it is worthwhile to compare and contrast our approach

with existing work. The previous work [12, 15, 21] is built around the notion

of graph separators. In such a formulation a mesh is viewed as an undirected

graph. An edge-separator is a set of edges that disconnects the graph into

two nearly equal sized pieces. The goal of separator based approaches is to

find separators of small size, thereby reducing the communication overhead.

There are two principal differences between parametric binary dissection, and

separator-based algorithms. PBD constrains all cuts to be straight lines, a

constraint not imposed On the other methods. As a consequence, for certain

problems and ranges of parameter values, the partitions produced by PBD

on this application are almost certainly inferior. This deficiency is balanced

by the fact that

• PBD is more general in its application (e.g., we see no easy way to use

graph separators for the color image quantization problem),

• linear cut constraints arise naturally in a number of applications, and

2



• PBD is undoubtably the simplest, and likely fastestmethod amongthe
alternatives.

Thus the quality of partitions producedby PBD on the specificproblem of
meshpartitioning is not the solemeasureof its value.

In Section2we reviewthe original binary dissectionalgorithm. The basic
ideasunderlying parametric binary dissectionare discussedin Section3. In
Section4 wepresenta fast algorithm for parametric binary dissection.This
algorithm canalso be usedfor ordinary binary dissectionand is faster than
the previously known algorithm. A simple parallel algorithm for parametric
binary dissection is presentedin Section 5. A more elaborate, and faster,
parallel algorithm appearsin Section6. Sections7 and 8 describeapplica-
tions of parametric binary dissectionto unstructured meshesand to image
quantization, respectively.We presentour conclusionsin Section9.

2 Binary Dissection

The original binary dissection algorithm proposed by Berger & Bokhari [3, 4]

can be applied to a variety of situations. In the present paper we are con-

cerned with the partitioning of 2, 3 (or possibly higher) dimensional domains

containing n points specified by their z, y, z,... coordinates. These points

can be bisected along the x direction by first sorting by the x coordinate and

then finding the mid-point. This process is accomplished in O(n log n) time

for the sorting and O(n) time for splitting the list of points. The bisection

process is then repeated along the y direction for the two subdomains and

so on.

If the depth of partitioning (the number of times the bisection is carried

out) is given by d, then the entire process takes time

d-I

O( (2'(n/2'logn/Z') + n)) = O(dnlogn). (1)
i---O

Since the depth of partitioning d < log n, this results in O(n log 2 n) in

the case of problems where the partitioning is carried out to large depths.

However, in many problems of interest the depth of partition d is small

compared to log n and it is more meaningful to use expression (1).



The basic bisectionstep describedabovecan also be carried out using a

fast (O(n)) median finding algorithm[5, 6]. The sorting step is eliminated

and we are left with O(dn) time. However the constants involved in the

linear time median finding algorithm are large and this method remains of

theoretical interest only.

Although binary dissection has found many applications, for example

[1, 9, 17], it partitions only on the basis of numbers of points. It is insensitive

to the distribution of points in space. As a result, in its attempt to equalize

the number of points at each bisection, '_t can yield partitions which have

poor aspect ratio (the ratio of largest to smallest sideS). This phenomenon

may be undesirable in specific applications,

When binary dissection is applied to the partitioning of graphs embedded

in 2 or 3 dimensional space, as is the case in many important aerodynamic

problems, the edge information (which determines the amount of information

that needs to be communicated between points) is ignored. Thus while binary

dissection can be (and has been) applied to such problems, the partitions

obtained can sometimes be poor as far as the compute/communicate ratio is

concerned.

3 Parametric Dissection

Parametric binary dissection remedies one of the shortcomings of the basic

algorithm by explicitly taking the shapes of regions into account. Thus, if the

problem is to partition a three dimensional region that contains a number

of points, we minimize at each bisection step load + ,k×(shape) for the two

subregions.

By load we mean the number of points in each region--this is the quantity

that plain binary dissection minimizes. Shape can refer to a variety of prop-

erties of regions. For example, if the problem is to partition a 2-dimensional

region into subregions such that the resulting subregions are as square as

possible, we may wish to use the perimeters of the resulting rectangles as our

shape property. At each bisection step we would minimize the the number of

points in each rectangle plus ,k times their perimeters. The parameter ,k per-

mits us to trade off load imbalance against shape imbalance---by sacrificing

some amount of load balance, we can improve the shape imbalance.

The preceding example can be extended in an obvious fashion to 3 or
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higher dimensions. Various shapeproperties can be used. For example, in
Section 8, we partition three dimensionalspaceand the shape property is
the length of the diagonal. In the following discussionwe shall assumethat
the shape property can be computed easily, so that the analysis of time
complexity of the algorithm is not affectedby it. Nothing keepsus from
using a complicatedshapeproperty, as long asweare willing to pay for the
time required to compute it while carrying out binary dissection. For the
problem of Section 8 we could chooseto use the distance betweenthe two
most distant points in any region as our shapeproperty, which is relatively
more expensiveto compute.

The discussionsofar hasbeenin terms of point problems,wherewe are
given a collection of points in 2, 3 or higher dimensional space. A more
complicatedsituation ariseswhenwe aregiven a graph embeddedin 2, 3 or
possibly higher dimensions.Here eachpoint or node hasassociatedwith it
a set of coordinatesas well asan adjacencylist. The objective hereis more
straightforward: eachbisection is carriedout to minimize nodes + )t x (edges

cut).

Graph partitioning problems arise in many environments, most notably

in the analysis of unstructured meshes (Section 7). When such meshes are

partitioned and mapped onto parallel computers, the running time is modeled

by

max [nodes in region + A x (edges leaving region)]. (2)
all regions

Here A corresponds to the well-known communicate to compute ratio for the

given parallel computer system, that is, the ratio of time required to fetch a

datum from a remote processor to the time to compute on a datum on the

local processor. The time given by (2) is normalized to the time required to

compute on one point, assuming a uniform computation cost for each point.

A more refined expression for the parallel computation time for partitioned

graphs is

max [nodes in region + a(edges in region) + )_ × (edges leaving region)].
all regions

(3)
In this case _ is the time to fetch information from a neighboring point in

the grid if that point lies on the same processor and )_ is is the time to fetch

this information if the point lies on a remote processor. Both quantities are

normalized in terms of time required to compute on a point.



For the caseof point problemscomplexity of parametricbinary dissection
is unchangedat O(dn log n), where d is the depth of partitioning 2. For graph

problems, the complexity is O(max[dn log n, de]), since we have to look at

all edges before splitting, at every depth of the partition.

4 Fast Parametric Dissection

A major factor contributing to the time complexity of the binary dissection

algorithms presented in Sections 2 and 3 is repeated sorting at each level of

partitioning. We now show how parametric binary dissection can be accom-

plished by sorting only once per dimension. The fast algorithm we present

also improves the time required for plain binary dissection.

Our fast algorithm obtains its efficiency by sorting only once per dimen-

sion. A separate index list is created for each dimension. When a region is

partitioned, all indices are split, so that the sublists corresponding to each

subregion remain sorted. For purposes of exposition, we assume a 3-d graph

partitioning problem and partition on the basis of expression (2) of Section 3.

A simple modification to the procedure given below permits us to partition

on the basis of expression (3) of Section 3. This modification does not affect

thecomplexity of the solui:ion. --

Let us suppose that the the index lists for the x, y and z dimensions are

stored in arrays xlist[],ylist_ and zlist[]. The subregion to be partitioned is

stored in array positions L...U. This means that the x dimension index list

extends from xlist[L] to xlist[U] and so on. The current depth of partitioning

is depth. The coordinates of point i are stored in x[i], y[i], z[i]. The procedure

for computing the parametric cut is as follows:

procedure PARAMETRIC_cuT(dept h, L, U,x,y,z,xlist,ylist,zlist);

1. Sweep forward from i=k to U counting the edges that would leave the left

hand region, if the left hand region was k to i (inclusive). Store the result
in leftvec[i].

2. Sweep backwards from i=U down to L counting the edges that would leave

the right hand region, if the right hand region was i to U (inclusive). Store
the result in rightvec[i].

2Assuming that the shape property for a region takes negligible time to compute.
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3. Sweep forward again from i=L to U to find the optimal split point:

• the left hand region comprises L to i,

• the right hand region comprises i-I-1 to U

• the optimal split point SPLITPLACE is the value of i for which the

objective MAX((i-L+I) + _x(leftvec[i]), (U-i) + _×(rightvec[i+l]))
is minimum. The value x[SPLITPLACE] is SPLITVALUE.

.

.

The xlist has now been split into two parts, L to SPLITPLACE and SPLIT-

PLACEd-1 to U. The x coordinates of these points are already sorted since

the original index list was sorted and has not been disturbed.

Split the ylist: sweep forward from i=L to U moving successive values of

ylist[i] for which x[ylist[i]] _SPLITVALUE to the first part of the list (Figure

2 illustrates this for a 2-d problem). The remaining values are moved to

the second part of the list.

.

7.

Similarly split the zlist.

At this point all three indices Mist, ylist and zlist have been split so that

elements [L..SPLITPLACE] of these lists contain the points in one of the

subregions and [SPLITPLACE+I..U] those in the other. When accessed

through these lists the x,y and z coordinates of the points are in sorted
order.

. Recursively cut for next depth but along next dimension

if(depth>l) then

PA RA METRIC_CUT(d ept h-1, L,SPLITPLAC E,y,z,x,ylist,zlist,xlist)

PARAMETRIC_CUT(dept h-1 ,SPLITPLACE+I, O,y,z,x,ylist,zlist,xlist)

endif;

end parametric_cut;

Figure 1 clarifies how leftvec and rightvec are computed. The vertical

dashed lines in this figure show one possible SPLITPLACE. The value of leftvec

for this SPLITPLACE is 5. This is because if the right hand region was chosen

to be up to and including the node through which this dashed line passes,

the number of edges leaving the left hand region would be 5. Similarly, if the

7



I

/
leftvec[+ i

8
7
6
5
+
3
2

1
0

I

I

I

, I .......... = i

rightvec[i]
8

7 I
6

4

3

2 I
1

0 , I .... , , , i , ,: i

Figure i: Computation 0fleffvec and rightvec in steps i and 2 of procedure

parametric_cut. The domain to be partitioned (along the x-direction) is given by

the top rectangle. The verticaJ dashed line is discussed in the text.
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Figure 2: Splitting index lists: suppose we choose to split points in the domain

as indicated by the vertical cut. xlist (thin arrows) is split in constant time. ylist

(thick arrows) is split in time proportional to the number of points, since each

point in this index list may have to be moved.



right hand regionwas chosen to start from this point onwards, the number
of edgesleaving the right hand region would be 8. Note that the edgelying
wholly betweenpoints outsidethe region_as no impact on the computation.
Figure 2 showshow the index lists are split.

Assurninga_fixednumberof dimensi?ns,thesorts take O(nlog n) time.

For point problems, each partition or split takes O(n) time. We therefore

get O(n log n) + O(dn) = O(n log n) for 'point problems.

For graph problems the sorting time is unchanged. The time to split is

now O(e) per level, as we have to look at every edge at every level. The time

is thus O(max[n log n, de]) for graph problems. However in this case it is

important to remember that the graphs corresponding to unstructured grids

from 2-d aerodynamic problems are planar and thus have e = O(n). Typical

3-d aerodynamic grids have bounded degree [7] and again have e = O(n).

Thus we again obtain O(n log n).

5 A Simple Paraiiel Algorithm

We now discuss a parallel version of the parametric dissection algorithm.

This is a simple algorithm that does not utilize the available processors well:

its runtime is O(n) independent of the number of processors, assuming that

the data points are supplied in sorted _'orm. However its extreme simplicity

is likely to make its implementation easy and its measured run times may

well be competitive with the more complex algorithm presented in Section 6.

We start by considering point problems and discuss graph problems (which

are only slightly more complicated to implement) at the end of this Section.

We make the reasonable assumption that the partitioning is to be carried

out on the same parallel machine on which the problem is to be solved.

Thus 2- and 3-d problems are Computed on 2- and 3-d meshes, respectively.

Alternatively, since a large enough hypercube can have any lower dimensional

mesh embedded in it, we may choose to run our problems on hypercubes.

Discussion of a parallel implementation is complicated by the issue of

mapping, Whereas in the seria| algorithm we were only concerned with

the partitioning, in the parallel algorithm we would like to partition our

domain and at the same time deliver the resulting subdomains to the correct

processors, This can result in substantial savings in time, as discussed below.

The question that now arises is how we are to map the 2 _ subdomains

I0
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that arise after a depth d partitioning onto a p = 2 d processor system.

The mapping that we choose is the natural mapping described by Berger

& Bokhari[3, 4]. When the first bisection is made, dividing the domain into,

say, a left half and a right half, then the left subdomain is associated with

the left half of the mesh and the right subdomain with the right half. This

process is repeated until the subdomains at the dth level are reached--these

are associated with individual processors.

5.1 Basic bisection step

We shall now suppose that we have a p = 2 d processor chain-connected

parallel machine. We shall describe how the basic bisection step is carried

out on this chain and then later show how this chain is mapped onto the

target parallel machine 3.

For purposes of illustration, we shall assume that we have a 2-d point

problem with n points and that the point data (comprising <x,y> coor-

dinates) has been duplicated and two sorted lists prepared, one for each

coordinate. These lists are loaded into our chain in a linear order, with 2n/p

points per processor.

Sweep-x Sweep through each point of the x-list sequentially from left to

right, in order to identify the optimal split point, as in Section 4. The

x-coordinate of the split point is called SPLITVALUE.

Migrate-x Move all points of the z-list with x-coordinate _< SPLITVALUE

to the left half of the processor chain and the remaining points move

to the right half.

Mark-y Now sweep through the y-list, marking with the label LEFT, those

points whose x-coordinates are < SPLITVALUE and all others with

RIGHT.

Migrate-y Move all points of the y-list marked LEFT to the left half of the

processor chain and those marked RIGHT to the right half.

SWhich could be a 2a/2 x 2_I_ 2-d mesh, a 2_Is x 2_13 x 2_/s 3-d mesh, or a dimension

d hypercube.
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Each of the above four steps takes time proportional to n. The basic

bisection step can now be repeated on the two halves of the chain, with the

roles of x and y interchanged. If at each bisection step the number of points

is exactly halved, the time required is proportional to no more than

n n n

n+ _+_-+_+... <2n.

Parametric binary dissection does not guarantee that each dissection step

will exac(Iy_ha]ve the number of points. We shall assume that the maximum

number of points at every step of the partitioning is a constant times the

ideal balance at that step. Thus the O(n) result obtained above holds for

plain as well as parameirlc binary dissection.

5.2 Bisectionable Chain Embedding

The bisection procedure described above only serves to partition the domain

over a chain of processors. When carrying out computations on 2-d or 3-d

domains we would naturally prefer to use 2- or 3-d meshes for our compu-

tation. We now describe embeddings of chains in 2- or 3-d meshes which

have the interesting property that when the basic bisection step of Section

5.1 is successively applied to such chains, then the points migrate to the pro-

cessors on which they should be mapped according to the natural mapping.

No explicit routing of data blocks is required. This property e][iminates an

expensive routing step.

Figure 3 shows how a Bisectionable Chain Embedding (BCE) is con-

structed b_y combining two smaller BCEs. To formalize the rules for gener-

ating BCEs, note first that their sizes can be either 2; x 2i or 2 i x 2 i+a, for

some integer i :> 1. The line segments making up BCES are parallel to either

the x or the y axis. For a 'non-square' BCE (that is, one of size 2i x 2i+I),

the longer side is parallel to the y axis. The rules for generating BCEs are
as follows.

1. A BCE of size 2 x 2 is a square with corners at (1, 1), (- 1, 1), (1, - 1)

and (-1,-1).

2. To construct a BCE of size 2i x 2i+1, translate a BCE of size 2i × 2i so

that its lower right corner lies at (1, 1). Reflect about the x axis. Delete

12
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VJ V]

2×2 2x4

I

4x84×4 8×8

Figure 3: A Bisectionable Chain Embedding (BCE) of size 2 x 4 is constructed

by juxtaposing two 2 × 2 BCEs and putting a 'bridge' between them. The figure

shows how 4 × 4, 4 x 8 and 8 x 8 BCEs are constructed using this procedure.

the segments (1,1)_ (-1,1) and (1,-1)_ (-1,-1). Add segments

(1, 1) +-_ (1, -1) and (-1, 1) ,-_ (-1, -1).

3. To construct a BCE of size 2TM x 2 i+1, translate a BCE of size 2 i x 2 i+1

so that it is symmetric about the x axis and its rightmost edge lies

on the line x = -1. Reflect about the y axis. Delete the segments

(1,1) _, (1, -1) and (-1,1)_(-1,-1). Add segments (1,1)_(-1,1)

and (1,-1)_ (-1,-1).

Figure 4 shows a bisectionable chain embedding of size 16 × 16. Our

sorted x and y-lists are mapped onto this chain starting at • and ending at

• . If the basic bisection step is applied to these lists then we will obtain two

13



Figure 4: A bisectionablechainembedding(BCE) of size16x 16. The sortedx

and y lists are mapped onto this chain starting at . and ending at It. If the basic

bisection Step (vertical cut) is applied to these lists then we will obtain two sets of

sublists, one set starting at, and ending at {2; the other starting at o and ending

at It. This procedure can now be repeated with two horizontal cuts.

sets of sublists, one set starting at • and ending at I::l; the other starting at

o and endingat m_...... _:_......... : : : :
The key property of BCEs is that at this stage the left half of the mesh

chain will contain only the points of the original lists that should be mapped

onto the left half of the mesh and similarly for the right half of the chain.

Thus when the bisection procedure is carried out recursively on a BCE, the

data points move to their respective parts of the mesh, so that at the end of

the procedure each processor contains its naturally mapped points.

The concept of Bisectionable Chain Embeddings is easily extended to

higher dimensions. Figure 5 shows a BCE for a 4 × 4 x 4 3-d mesh. ::

14



X

Figure 5: A 3-d BCE of size 4 × 4 x 4. x, y and z lists are mapped onto this chain

starting at • and ending at • . The first bisection (with a plane perpendicular

to the x axis) will split the BCE at the dashed segment. This procedure is then

repeated recursively for the y and z directions. For clarity the spacing along the

z axis has been distorted.

5.3 Graph Problems

We present our analysis for the case of degree constrained graphs embedded

in 3-space, and assume that 3 copies of the graph are available to us, sorted

by each of the dimensions 4. Each item in the x-list, for example, contains the

<x, y, z> coordinates of the point and the coordinates of all points adjacent

to this point. These lists are mapped onto a chain of processors as before

4Applications to higher or lower dimensions are immediate, although it is to be kept in
mind that the space required by this algorithm (on each processor) is proportional to the
number of dimensions of the problem. It should be recalled that the ultimate objective
of the partitioning is to permit a complex aerodynamic computation to take place. The
partitioning is carried out before the computation. The actual computation requires a large
number of variables for each point to store, for example, the velocity vectors, pressure,
density etc. Typically from 50 to 100 locations are required for each point [7]. This space

can thus freely be used for the binary dissection.
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and the chain of processors embedded in a 3-d mesh.

The basic bisection step for graph problems requires visiting each pro-

cessor sequentially, and within each processor, traversing the x-list. As each

point is visited, we count the number of edges that would be cut if this point

were the extreme point in the bisection. This process is repeated in the re-

verse direction and then the point where the minimum of nodes + )_x(edges

cut) occurs found along the lines of the serial procedure of Section 4. This

is folloWed by list migration. This step is then repeated successively in the y

and z directions.

Of course, at ,eachp0intwe must visit the nodes adjacent to that point,

and list migration involves moving not only each point, but also its adjacent

points. Our time complexity is unchanged at O(n) because we have assumed

a constant degree constraint.

6 Fast Parallel Algorithm

The ideal algorithm for parametric dissection of an n node problem on a p

processor system would have complexity O(n/p log n/p), which is the same as

if each processor were solving the subproblem resident on it in isolation. This

lower bound is difficult to achieve because of the overhead of interprocessor

communication (which depends heavily on the interconnection structure of

the parallel processor). The fast algorithm that we present in this Section

comes close to this bound, at least on hypercubes. We present our algorithm

for a graph problem; application to the simpler point problem is straightfor-
ward.

6'1 Notation

We shali assume that the problem graph is made up of n nodes, with a fixed

degree constraint. The problem graph is supplied to us in sorted form, one

copy per dimension. The graph is initially partitioned into p blocks in a

chain-like fashion; the chain is in turn embedded on our parallel processor

according to the Binary Chain Embedding discussed earlier. The parallel

processor may be interconnected as a 2- or 3-d mesh or as a hypercube s. To

Slnthe Case 0f hypercubes, the 2- or 3-d BCEisembedded in a mesh which is, in turn,

embedded in the hypercube using the Gray code embedding technique[16].
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permit a unified analysis of our parallel algorithm, the times taken by certain

required communication operations on the parallel processor are given by the

symbols enumerated in Table 1. At the end of this Section we compare the

performance of this algorithm on the three types of processor interconnects

by substituting actual known expressions for these symbols.

Table 1: Times required on a k-processor system.

Symbol Operation

S(k) sum-prefix

C(k) condense subchains

.M(k) find minimum

7_(k) arbi'trary permutation

6.2 The Algorithm

For our exposition, we assume that an n node graph embedded in 2-d is

given to us. Two copies of this graph, sorted by the x and y directions, are

mapped onto a chain of p processors. The fast parallel parametric bisection

algorithm has the following four steps.

1. Find leftvec and rightvec

2. Find optimal split point

3. Migrate the graph

4. Repeat recursively along next direction

6.2.1 Finding leftvec and rightvec in parallel

In order to find the optimal split point, we must compute leftvec and rightvec

as was done in Section 4. Parallel computation of these vectors is complicated

by the fact that the n node graph is distributed over p processors. The ideal

lower bound of O(n/p) is difficult to achieve because of the overhead of

interprocessor communications.
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Figure 6: Para_el computation of leftvec. The domain to be bisected is given at

the top and is partitioned across 4 processors. The upper plot (points marked *)

shows the desired leftvec. The lower plots (points marked o) show local estimates

of leftvec by each processor. Estimates on /'2, P3, & P4 are in error by 6, 7 &

6 units, respectively, because these processors do not know about edges that (1)

straddle them or (2) leave the region from processors to their left.
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Figure 6 shows a graph embedded in 2-d that has been partitioned across

four processors, with n/p points per processor. The plot with points labeled

• shows the desired leftvec. Each individual processor cannot compute this

vector because it lacks crucial information about edges that are incident on

nodes assigned to other processors that influence the vector positions that

lie on itself.

Each processor can compute a local estimate of its portion of leftvec in

O(n/p) time. This is done by sweeping 6 through the points in x order, adding

up in Iocal_leftvec[i] the edges that would leave the region if the bisection point

was chosen to be just beyond node i. This process takes O(n/p) time, since

each processor has only to compute its n/p elements of Iocal_leftvec.

In the example of Figure 6, the Iocal_leftvecs on processors P2, P3 & P4

are in error. On P2 for example, the estimate is consistently 6 units below

the desired value. This is because P2 is not aware of the 3 edges that straddle

it, and the three edges that leave the region from nodes within processor P1.

It is thus clear that a communication step is required to inform all processors

of (1) all straddling edges and (2)all edges that leave the region from other

processors.
For every processor Pk, k > 1, define Lk to be the number of edges that

are cut by the separation of the chain between processors Pk and Pk-1. It

is important to remember that the processor ordering is with respect to the

embedded chain. Given Lk, Pk can compute leftvec[i] = Iocal_leftvec[i] + Lk

for all the points i resident on Pk. The problem then is to determine the set

of values Lk, in parallel.

Each processor Pk can count the total number of edges that have an

endpoint in Pk and an endpoint in any processor to the left of Pk (i.e., in

some Pj, j < k). Denote this total by Ik. Similarly, each Pk can count the

total number of edges that have an endpoint in Pk and an endpoint in any

processor to the right of Pk; call this Ok. Now observe that the number of

edges that span Pk is Lk -- Ik: the number that enter Pk from the left, less

the edges that terminate in Pk. The number of edges that are cut by the Pk

to Pk+l split (i.e., Lk+l) is equal to the number of edges that span Pk, plus

the number of edges that originate in Pk: (Lk - Ik) + Oh. This gives us the

6This sweep is slightly more complicated than the sweep for the serial algorithm, since

edges can be encountered at node j that increase the values of Iocal_leftvec[z] for all i < j.
However, it can still be accomplished in O(n/p) time.
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recursion

Lk+l = Lk--Ik+Ok

---- Lk + Dk where Dk -- -[k + Ok
k

= _Di.
i_l

From this we see that the problem of computing the values of Lk is solved

simply by a parallel sum-prefix on the values Dk, which we assume to take

time S(k): The it0tal time required in finding leftvec and rightvec is thus

o(n/p) + S(k).

6.2.2 The optimal split point

Once the global information has been compensated for, each processor has

a portion (of size n/p) of leftvec resident on it. It now remains to find

the optimal sl_lit point. Each processor can find its local minimum in time

O(n/p) and all processors can decide on the global minimum in time M(p).

6.2.3 Migrating the graph

The next Step is the migration of the x and y Copies Of the graphs to the

appropr]ate halves of theparallel processor. As far as the x copy is concerned,

the split point is already known. This is illustrated in Figure 7. In this Figure

a graph of 16 nodes is distributed uniformly over 4 processors. The bisection

point in this example happens to assign l0 nodes to the left half of the domain

and 6 nodes to the right half. After migration, therefore, there must be 5

nodes each on processors P1 & P2 and 3 nodes each on P3 & P4. Solid vertical

lines indicate the orlg]nai partition While dashed lines indicate the partition

after migration. The migration of the x graph requires the movement of no

more than n/p points from a processor to its neighboring processors/ The

migration of the z graph thus takes time O(n/p).

The migration of the y copy of the graph is far more complex and is

illustrated in Figure 8. This Figure shows the y copy of the graph of Figure

7. This y copy is also partitioned uniformly over four processors, as indicated

by the solid vertical lines. Note that the x and y axes are interchanged in

7This is because the vertical strips of the domain are mapped onto a chain of processors.
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Figure 7: A 16 node graph, sorted by the x direction, uniformly partitioned over

four processors (thick solid lines). The bisection assigns 10 (6) nodes to the left

(right) half of the domain. Nodes must be migrated so as to place 5 nodes each

on P1 -/)2 and 3 nodes each on P3 -/)4 (dashed lines).

,,y

Figure 8: The graph of Figure 7 sorted by the y direction is also uniformly

partitioned over the four processors. When a bisection is carried out in the x

direction, as shown in Figure 7, this y graph must also be repartitioned. In this

case all nodes with x coordinates less (greater) than the bisection point must be

uniformly distributed across P1 "P2(P3 - t)4). Dashed boxes show the assignment

of nodes after migration.
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this case. Our objective in carrying out the migration is to ensure that the

two halves of the processor chain, i.e. P1 - P2 & P3 - P4, contain the same

subsets of nodes of the graph. Thus, since the nodes in Figure 7 to the right

of the bisection point are moved to processors P3 - P4, we must similarly

move the nodes above the bisection point in Figure 8 to P3 - P4. The nodes

on the other side of the bisection point must conversely be sent to P1 - P2.

The dashed boxes in Figure 8 show the ultimate destinations of the nodes of

the y graph.

The interprocessor communication requirements of the y migration step

are particularly severe. For example in Figure 8 we can see that P_ and

P3 both need to send information to P1. Similarly, P3 and P4 need to send

information to P2. It can ais0 arise (although this is not illustrated in Figure

8) that one processor is required to send information out to several other

processors. It is possible to satisfy this communication requirement using

the complete exchange pattern, however it is possible to do much better, as

the following discussion indicates.

Recall that our graph has been partitioned across a chain connected ar-

ray of processors and the chain in turn embedded in a 2 or 3-d mesh or a

hypercube using the BCE discussed earlier. Referring to Figure 8 we see that

when several processors need to transmit to one processor, the transmitting

processors form a subchain. For example, P2, P3, P4 form a subchain that

transmits to processor P4. Instead of each processor transmitting individu-

ally to the destination, we can arrange to condense all information from a

transmitting processor subchain into one processor, and then transmit from

that one processor to the destination. Conversely, when one processor needs

to receive from several processors, the receiving processors form a subchain

and we can arrange to transmit to one of these processors and then dissemi-

nate this information to the recipients. The advantage in doing so is that the

data movement between processors becom_es a permutation and well-known

techniques can be utilized for this [13, 22]. We shall discuss in Section 6.3

the details of these operations on specific interconnection structures. For

the moment we shall assume that the time required for condensation and

dissemination on a k processor system is C(k) and the time for permutation

is T_(k).

The process of y-migration is then as follows.
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1. Condense all nodes of a subchain into one node,

2. transmit (permute) data between subchains, and

3. disseminate to nodes of receiving subchains.

In the worst case, each processor needs to send out or receive O(n/p)

points so that the time required for the y migration step is O(n/p)P(k).

The total time for the z and y migrations is thus O(n/p) + O(n/p)C(k) +

o(n/p)'p(k).

6.2.4 Summary

Table 2 summarizes the parallel algorithm and the time taken by each phase

of the basic bisection step.

r

Table 2: Time taken by the basic bisection step.

a Compute vectors O(n/p) + S(k)

2 Find optimal split point O(n/p) + .M(k)

3 Migrate nodes O(nlp) + O(nlp)C(k)+

6.3 Analysis of Run time

We now investigate the running time of the fast parallel algorithm on 2-

and 3-d meshes and on hypercubes. This is done by substituting known

expressions for the operations of Table 1 into the expressions of Table 2.

6.3.1 2-d meshes

Finding minimum and executing an arbitrary permutation on a 2-d mesh

takes time .Ad(k) = P(k)= 0(kl/2)[13, 20]. The sum-prefix operation takes

time $(k) = log(k)P(k) = log(k)O(k 1/2) as it requires log k different permu-

tations.

To determine the time required for a condensation operation, we note that

a BCE can only have aspect ratio 1 or 2. Thus a BCE with k nodes is mapped
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Figure 9: When a k node BCE is mapped onto a 2-d mesh, each subchain of the

BCE can be spanned by a tree with degree constraint 4 and diameter less than

the diameter of the mesh. Two subchains are indicated on the left of the diagram.

The corresponding trees are shown on the right hand side.

onto a mesh of size 2_o,2 k] × 2[]og_ kJ. This mesh has diameter 0(kl/2). It

follows that the nodes of each subchain of a BCE can be connected by a

spanning tree of diameter 0(kl/2), £S _ilustrated in Figure 9' Furthermore,

the degree of the nodes of this subtree is constrained to 4, since the mesh

has degree 4. Thus the condensation operation can be carried out in parallel

on all subchains in time C(k) = O(k_12).

Recalling that O(n/p) data points are transmitted at each step, the time

for the basic bisection step (Table 2) is

n

o(-_)+ s(k) +M(k)+o(_)c(k) + o(_)_,(k)

= log_o(k'/_)+o(k'/_),+ o(-_)o(k'/_)+ o(_)o(k'/_)

= logkO(k'/_)+ O(-_)O(k'/_)

This Step is repeated for k = p,p/2,p/4,.... The time for the entire fast

parallel algorithm for an n node problem on a p processor system is thus

tz-d me,h = O(-;_h + p'/21ogp). (4)
p-,-
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6.3.2 3-d meshes

The time required to compute minimum, .M(k), and to execute an arbitrary

permutation, T'(k), is O(k '/3) [13, 20]. Sum prefix takes S(k) = log k79(k) =

log kO(kl/3). The condensation time g(k) = O(kl/3), using an argument

similar to the one for 2-d meshes. The time for the basic bisection step is
thus

log kO(k '/3) + O(p)O(k'/3).

The total time, obtained by summing the times for k = p, p/2, p/4,..., is

n pl/3t3-d mesh = O(_ + logp). (5)
po, v

6.3.3 Hypercubes

On a hypercube, the time for computing minimum .M(k) = O(log k). The

time for permuting data is 7:'(k) = O(log k) using Waksman's method[22],

provided the required data routings are computed first. The O(k log k) over-

head of this precomputation is prohibitive for permutations that are not

known beforehand, as is the case for the node migration step (line 3 of Table

2). 8 We therefore use the simpler sorting approach to permuting data, which

requires 79(k) = O(log 2 k) time and has no setup overhead.

For the computation of leftvec and rightvec (line 1 of table 2), we need to

carry out a sum-prefix computation, which requires log k permutations, each

with a fixed communication pattern. Waksman's method can be used in this

case as the fixed data routings can be computed beforehand for a given size

of hypercube. The time required for this operation is thus S(k) = log 2 k.

To investigate the condensation time g(k), we note that our domain has

been mapped onto a BCE, which has been embedded in a 2- or 3-d mesh,

which in turn has been embedded in a hypercube. Subchains of size k or

less are thus wholly contained in subcubes of size O(k) and can be spanned

SNassimi and Sahni's algorithm[14], which also takes O(log k) time on hypercubes and

requires no precomputation of routing, is restricted to a subset of all possible permutations.

At this time, it is not known whether the data movements required in parallel parametric

binary dissection fall into the category to which this technique can be applied.
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by trees of diameter O(log k) with degree constraint O(log k), leading to

O(log 2 k) condensation time. The times from table 2 become

O(p) + S(k) + M(k) + O(p)C(k) + O(p)'P(k)

= OClog' k)+ o( )O(logk)+o/ )O(log*k)

= o(_)O(log_k).
p

The total time for hypercubes is thus

thypercube = O(p log 3 p).
(6)

7 Applications to Unstructured Meshes

A portion of a 2-d unstructured mesh is shown in Figure 10. It can be seen

that this mesh has a very large variation in node density. The objective, in

generating the mesh, is to have a higher density of nodes in the regions where

there is greater need for accuracy. It is this variation in density that makes

such meshes difficult to partition. 3-dimensional unstructured meshes are an

obvious extension but are impossible to illustrate on a 2-d page.

We have implemented the Fast Parametric Dissection algorithm of Section

4, using equation (2) of Section 3. This algorithm has been used to partition

several very large 3-d unstructured grids taken from aerodynamic problems.

When applying parametric dissection on such grids, it is often the case that

the first cut is badly imbalanced as far as the number of nodes is concerned.

This is because binary dissection considers the graph to be embedded in

a rectangle 0r cuboid, with edges extending to the sides of the rectangle

or cuboid (as shown in Figure 10). The mesh really occupies a roughly

ellipsoidal region of 2 or 3-d space (which cannot be depicted in figure i0 as

it is very large compared to the wing cross-section shown). When )_ is non

zero, the first cut is likely to slice off a small tip of the ellipsoid, so as to

minimize the number of edges cut. Thus we have a tiny number of nodes

in one region and most of the nodes in the other region. The objective (2)

is correctly minimized and the partitioning obtained is superior to a plain

partitioning, but only for depth 1. Beyond depth 1 or 2 this poor initial cut
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Figure 10: A 2-d unstructured mesh.
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leadsto bad partitions. This phenomenonis very similar to that describedby
Stonein connectionwith the partitioning of random graphs[18]. Our solution

to this problem is to carry out the first 1, 2 or 3 cuts with )_ = 0 and switch

over to the desired value of ), only after these initial cuts have balanced the

number of nodes in the initial 2, 4 or 8 subregions.

In order to evaluate the speedup that would be obtained if a parametric

binary dissection were used, compared to plain binary dissection, we carried

out an experiment with a 3-d mesh of size 106,064 nodes and 697,992 edges.

This mesh is derived from a problem involving a wing and pod (engine en-

closure) and half a fuselage. Measured run time on a 50 MHz MIPS R4000

processor for a depth 15 partition of this mesh is 83 seconds (excluding time

to input the mesh).-

The following evaluation procedure was repeated for depths = 4 - 15.

• Run the parametric dissection algorithm for )_ = 0.0, 0.2,.-., 1.0.

• For each run obtain maxnodes($) and maxedges($), the maximum

number of edges and nodes over all regions.

• The normalized run time for a dissection is

tp_metric()_) = maxnodes( $ ) + ,_ × maxedges(,X ).

This assumes ideal communications on the target parallel processor.

• maxnodes(O) and maxedges(O) are the values that would have obtained

if plain binary dissection had been used, since for )_ = 0 parametric

dissection reduces to plain dissection. Thus for this problem the time

taken by a plain dissection is

tp,_in = maxnodes(O) + ,X × maxedges(O).

• For a given value of )_ the performance advantage of the parametric

algorithm is
tplain

h p,'oveme,',t() = tp.  e,ric( )"
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Figure 11: Improvement of parametric binary dissection over plain binary dissec-

tion, when applied to a 3-d aerodynamic mesh with _ 0.1 million nodes and _, 0.7

million edges, for depths 4-15 (corresponding to 16, 32,..., 32768 processors). For

A = 0 parametric dissection reduces to plain dissection and there is no speedup.
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The resultsof the aboveexperimentaresummarizedin the plots of Figure
11 which show the performanceimprovementof parametric dissectionover
plain dissection. Sinceparametric dissectionreducesto plain dissectionfor

= 0, the curve corresponding to this )_ is constant at 1.00. There is no

improvement for depth=l,2 or 3 because plain dissection is used for these

depths, as discussed above, and these depths are not shown.

There is initially a small improvement at depth 4, after which perfor-

mance is actually slightly poorer than plain dissection. Beyond depth=10,

the advantage of using parametric dissection increases steeply with increas-

ing depth. In this example the parametric algorithm yields partitions that

are 20% better than plain dissection at depth 15.

8 Applications to Color Image Quantization

The algorithms described above have applications to partitioning problems

unrelated to parallel processing. One example is color image quantization,

in which samples in a high-resolution color space are mapped onto a lower

resolution space in a way that minimizes the color error I11]. More formally,

we are given a digital image whose pixels are chosen from a palette containing

2 m colors, and we wish to generate an acceptable reproduction using a palette

of 2 k colors, where /_ < m. Typical values for m run from 15-24, while k

is usually in the range from 8-12. Color quantization is commonly used to

convert full-color images into colormapped or pseudocolor images in which

each pixel is a k-bit index into a color lookup table, or colormap.

In full-color images, the m bits of color information are typically divided

into three distinct color components, each using _ m/3 bits. If we assume a

red-green-blue (RGB) color model, then each component represents an axis

in a three-dimensional color grid. The component values at each pixel can

be thought of as indices into this grid. The problem then becomes one of

partitioning the grid such that (1) the total number of regions is bounded by

k, and (2) the maximum distance between any two points within a region is
minimized. The latter Constraint is a measure of the color error between the

original image and the quantized result.

At the end of the partitioning process, the colors found in each region

will map to the same representative value in the colormapped result. A

variety of techniques have been proposed for partitioning the color space [10],

30

.F

E

:i



[11], [19], [23], [24]. Our approach most closely resembles Heckbert's median

cut algorithm, but uses a modified version of Fast Dissection to speed up

bounding box computations and reduce the maximum color error. We can

also employ the parametric dissection idea to provide additional control over

the placement of cuts.

The first step is to scan the original image and record which points in

the color space are represented. We store this information in a 3-d Boolean

matrix. The matrix is then scanned to produce a list of the colors which

occur. The color list is replicated and sorted for each color component,

as required by the Fast Dissection algorithm. Since our color components

require only a few bits each, we can avoid the level of indirection required by

the PARAMETRIC_CUT algorithm of Section 4. Instead, each color component

can be stored directly as a bit field within a list item, reducing both memory

and computation costs.

We next need a strategy for partitioning the lists. In the context of this

problem, load (the number of colors in a region) is much less important than

shape (the maximum distance between the points, or color error). Therefore

our objective function is reformulated as color error + A × (no. of colors).

Increasing A improves the ability to distinguish between colors in densely

populated regions of the color space at the expense of poorer resolution in

sparsely populated areas. Since the quality of a quantized image is often

subjective, A may be varied until the most pleasing result is achieved.

Other objective functions are certainly possible. For example, the colors

in a partition could be weighted according to the number of times they occur

in the original image (Heckbert's popularity criterion). This leads to a more

accurate rendition of those colors which comprise large areas in the image,

and less accurate rendition of others. Adjusting the value of A determines

how much the partitioning is influenced by the popularity counts. Simply

setting A to zero may be perfectly acceptable for many images, since this will

tend to minimize the overall color error irrespective of other considerations.

For the sake of efficiency, we use a simple technique to estimate the color

error in a region. Rather than searching for the two most extreme points

and computing the distance between them, we use the length of the diagonal

of the bounding box containing the points. With Fast Dissection, finding

the bounding box is trivial--w e simply obtain the respective maximum and

minimum color Components from each of the three sorted lists. At each

partitioning step, these are accessible via the k and IJ list indices.
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In our earlier descriptions of Parametric Binary Dissection and Fast Dis-

section, we have assumed a recursive partitioning process which descends

until the maximum number of subregions is produced, or until a region can-

not be subdivided further. For color quantization, we follow Heckbert's lead

and modify this strategy to utilize adaptive partitioning. With adaptive par-

titionlngl the directions of the cuts are not predetermined by the depth of

the recursion, but are chosen dynamically based on properties of the data.

A simple heuristic which works well for color quantization is to split the

region along the longest edge, i.e., in the direction of largest color error.

A more elaborate approach could use Fast Dissection to compute the split

points in each direction, and evaluate the objective function for the resulting

subregions. The cut would then be made in the most favorable direction.

One disadvantage of the recursive approach is that the partitioning pro-

cess can "bottom out" prematurely--one or more branches of the recursion

tree may encounter regions which cannot be further subdivided, even though

other branches may offer ample opportunity for subdivision. The net result

is that some of the available c01orma p entries go unused. Our solution to

this problem uses an iterative variant of Fast Dissection. After each cut is

made, the objective function is evaluated for the resulting subregions, and

they are placed on a global subregion list, sorted by descending magnitude

of the objective function. At each step of the iteration, the first subregion

on the list is partitioned. This procedure guarantees that every available

colormap entry will be used (assuming the original image contains at least

2 k colors), and it also drives the largest value of the objective function to a
minimum.

When the partitioning phase is complete, the color of each region is set

to the centrold of the bounding box, and all plxels whose original color lies

in that region are mapped to the new value.

9 Conclusions

We have presented a new approach to the partitioning problem for non-

uniform domains, analyzed its run time for serial and parallel machines and

presented some measured performance figures. The parametric dissection

algorithm is seen to provide better performance than the original binary

dissection algorithm for large depths of partitioning.
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A fast algorithm for parametric dissection was presented in Section 4.

This algorithm has run time O(n log n) as opposed to the original O(n log 2 n)

dissection algorithm. The time for dissection is thus completely masked by

the time required to sort the input data.

We have presented two parallel algorithms for parametric dissection. The

O(n) algorithm is simpl e to implement and will likely be useful in situations

where the mesh is being input serially to the processor, as in this case the

dissection time is masked by the time to load. Our more elaborate algorithm

has time O((n/p 1/2) + pl/2logp), O((n/p 2/a) + pa/31ogp) and O((n/p) log3 p)

for 2-d meshes, 3-d meshes and hypercubes, respectively. This algorithm

performs well for problems in which the number of nodes n is large compared

to the number of processors, a case that is of considerable practical interest.

Future work in this area shall develop along the following lines.

1. Improvements in the parallel algorithm. Communication overhead,

shows up prominently in the expressions for run time of our algorithm.

Whether this can be reduced significantly is an open question.

2. Implementations of the parallel versions of the dissection algorithms

for the iPSC-860, Touchstone Delta and Paragon.

3. Evaluation of the performance of PBD on a large set of unstructured

meshes.

4. Use of these dissections for actual computation, especially for aerody-

namic problems.

5. Applications of PBD to other areas, such as circuit and VLSI parti-

tioning.
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